Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions.
نویسندگان
چکیده
Contact inhibition ubiquitously exists in non-transformed cells that are in contact with neighboring cells. This phenomenon explains the poor regenerative capacity of in vivo human corneal endothelial cells during aging, injury and surgery. This study demonstrated that the conventional approach of expanding human corneal endothelial cells by disrupting contact inhibition with EDTA followed by bFGF activated canonical Wnt signaling and lost the normal phenotype to endothelial-mesenchymal transition, especially if TGFβ1 was added. By contrast, siRNA against p120 catenin (CTNND1) also uniquely promoted proliferation of the endothelial cells by activating trafficking of p120 catenin to the nucleus, thus relieving repression by nuclear Kaiso. This nuclear p120-catenin-Kaiso signaling is associated with activation of RhoA-ROCK signaling, destabilization of microtubules and inhibition of Hippo signaling, but not with activation of Wnt-β-catenin signaling. Consequently, proliferating human corneal endothelial cells maintained a hexagonal shape, with junctional expression of N-cadherin, ZO-1 and Na(+)/K(+)-ATPase. Further expansion of human corneal endothelial monolayers with a normal phenotype and a higher density was possible by prolonging treatment with p120 catenin siRNA followed by its withdrawal. This new strategy of perturbing contact inhibition by selective activation of p120-catenin-Kaiso signaling without disrupting adherent junction could be used to engineer surgical grafts containing normal human corneal endothelial cells to meet a global corneal shortage and for endothelial keratoplasties.
منابع مشابه
Lysophosphatidic acid induces YAP-promoted proliferation of human corneal endothelial cells via PI3K and ROCK pathways
The first two authors contributed equally to this work.Silence of p120-catenin has shown promise in inducing proliferation in human corneal endothelial cells (HCECs), but there is concern regarding off-target effects in potential clinical applications. We aimed to develop ex vivo expansion of HCECs using natural compounds, and we hypothesized that lysophosphatidic acid (LPA) can unlock the mito...
متن کاملKnockdown of both p120 catenin and Kaiso promotes expansion of human corneal endothelial monolayers via RhoA-ROCK-noncanonical BMP-NFκB pathway.
PURPOSE To determine the signaling pathway involved in expanding contact-inhibited human corneal endothelial cells (HCECs) using p120 and Kaiso small interfering RNAs (siRNAs). METHODS Expansion of HCEC monolayers on collagen IV in SHEM using p120 siRNA was optimized regarding various dosage, frequency, and starting date before being added Kaiso siRNA or various inhibitors of Rho, ROCK, NFκB,...
متن کاملSelective Activation of p120ctn-Kaiso Signaling to Unlock Contact Inhibition of ARPE-19 Cells without Epithelial-Mesenchymal Transition
Contact-inhibition ubiquitously exists in non-transformed cells and explains the poor regenerative capacity of in vivo human retinal pigment epithelial cells (RPE) during aging, injury and diseases. RPE injury or degeneration may unlock mitotic block mediated by contact inhibition but may also promote epithelial-mesenchymal transition (EMT) contributing to retinal blindness. Herein, we confirme...
متن کاملSenescence Mediated by p16INK4a Impedes Reprogramming of Human Corneal Endothelial Cells into Neural Crest Progenitors
Human corneal endothelial cells (HCECs) have limited proliferative capacity due to "contact-inhibition" at G1 phase. Such contact-inhibition can be delayed from Day 21 to Day 42 by switching EGF-containing SHEM to LIF/bFGF-containing MESCM through transient activation of LIF-JAK1-STAT3 signaling that delays eventual nuclear translocation of p16INK4a. Using the latter system, we have reported a ...
متن کاملCell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells.
In src- and ras-transformed cells, tyrosine phosphorylation of adherens junction (AJ) components is related to impairment of cell-cell adhesion. In this paper we report that in human endothelial cells (EC), tyrosine phosphorylation of AJ can be a physiological process regulated by cell density. Immunofluorescence analysis revealed that a phosphotyrosine (P-tyr) antibody could stain cell-cell ju...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 125 Pt 15 شماره
صفحات -
تاریخ انتشار 2012